Remark on subgroup intersection graph of finite abelian groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

subgroup intersection graph of finite abelian groups

let $g$ be a finite group with the identity $e$‎. ‎the subgroup intersection graph $gamma_{si}(g)$ of $g$ is the graph with vertex set $v(gamma_{si}(g)) = g-e$ and two distinct vertices $x$ and $y$ are adjacent in $gamma_{si}(g)$ if and only if $|leftlangle xrightrangle capleftlangle yrightrangle|>1$‎, ‎where $leftlangle xrightrangle $ is the cyclic subgroup of $g$ generated by $xin g$‎. ‎in th...

متن کامل

On $m^{th}$-autocommutator subgroup of finite abelian groups

Let $G$ be a group and $Aut(G)$ be the group of automorphisms of‎ ‎$G$‎. ‎For any natural‎ number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $G$ is defined‎ ‎as‎: ‎$$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G‎,‎alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$‎ ‎In this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎ ‎all finite abelian groups‎.

متن کامل

on $m^{th}$-autocommutator subgroup of finite abelian groups

let $g$ be a group and $aut(g)$ be the group of automorphisms of‎‎$g$‎. ‎for any natural‎‎number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $g$ is defined‎‎as‎: ‎$$k_{m}(g)=langle[g,alpha_{1},ldots,alpha_{m}] |gin g‎,‎alpha_{1},ldots,alpha_{m}in aut(g)rangle.$$‎‎in this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎‎all finite abelian groups‎.

متن کامل

A Remark on Locally Compact Abelian Groups

I t has recently been shown by Halmos [l ] that there exists a compact topological group which is algebraically isomorphic to the additive group of the real line, an example being given by the character group of the discrete additive group of the rationals. Exploiting his argument a bit further it is easy to see that the most general such example is the direct sum of N replicas of the one alrea...

متن کامل

On non-normal non-abelian subgroups of finite groups

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Open Mathematics

سال: 2020

ISSN: 2391-5455

DOI: 10.1515/math-2020-0066